Identifying Constant of Proportionality (Tables) Name:
Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$
Ex)

Time in minute (x)	5	10	7	2	9
Gallons of Water Used (y)	195	390	273	78	351

Every minute _39_gallons of water are used.
1)

Chocolate Bars (x)	4	5	9	3	8
Calories (y)	1,320	1,650	2,970	990	2,640

Every chocolate bar has \qquad calories.
2)

Pounds of Beef Jerky (x)	8	7	9	4	3
Price in dollars (y)	104	91	117	52	39

For every pound of beef jerky it cost \qquad dollars.
3)

Enemies Destroyed (x)	10	9	7	8	3
Points Earned (y)	160	144	112	128	48

Every enemy destroyed earns \qquad points.
4)

Votes for Sarah (x)	9	4	10	6	7
Votes for Mike (y)	423	188	470	282	329

For Every vote for Sarah there were \qquad votes for Mike.
5)

Pieces of Chicken (x)	3	9	2	7	6
Price in dollars (y)	6	18	4	14	12

For each piece of chicken it costs \qquad dollars.
6)

Phone Sold (x)	8	6	5	4	9
Money Earned (y)	248	186	155	124	279

Every phone sold earns \qquad dollars.
7)

Lawns Mowed (x)	6	9	10	8	5
Dollars Earned (y)	270	405	450	360	225

For every lawn mowed \qquad dollars were earned.
8)

Boxes of Candy (x)	2	9	4	3	7
Pieces of Candy (y)	34	153	68	51	119

For every box of candy you get \qquad pieces.

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$
Ex)

Time in minute (x)	5	10	7	2	9
Gallons of Water Used (y)	195	390	273	78	351

Every minute _39_gallons of water are used.
1)

Chocolate Bars (x)	4	5	9	3	8
Calories (y)	1,320	1,650	2,970	990	2,640

Every chocolate bar has 330 calories.
2)

Pounds of Beef Jerky (x)	8	7	9	4	3
Price in dollars (y)	104	91	117	52	39

For every pound of beef jerky it cost _13_dollars.
3)

Enemies Destroyed (x)	10	9	7	8	3
Points Earned (y)	160	144	112	128	48

Every enemy destroyed earns 16 points.
4)

Votes for Sarah (x)	9	4	10	6	7
Votes for Mike (y)	423	188	470	282	329

For Every vote for Sarah there were _ 47 votes for Mike.
5)

Pieces of Chicken (x)	3	9	2	7	6
Price in dollars (\mathbf{y})	6	18	4	14	12

For each piece of chicken it costs \qquad 2 dollars.
6)

Phone Sold (x)	8	6	5	4	9
Money Earned (y)	248	186	155	124	279

Every phone sold earns _31_dollars.
7)

Lawns Mowed (x)	6	9	10	8	5
Dollars Earned (y)	270	405	450	360	225

For every lawn mowed _ 45 dollars were earned.
8)

Boxes of Candy (x)	2	9	4	3	7
Pieces of Candy (y)	34	153	68	51	119

For every box of candy you get _17_ pieces.

Answers

Ex. \qquad

1. $\mathbf{y}=\mathbf{3 3 0 x}$
2. $\mathbf{y}=13 \mathrm{x}$
3. $y=16 x$
4. $y=47 x$
5. $\quad \mathbf{y}=2 \mathbf{x}$
6. $\mathbf{y}=\mathbf{3 1 x}$
7. $\mathbf{y}=45 \mathrm{x}$
8. $\mathbf{y}=17 \mathrm{x}$

-

